Section 8-1
Solving Trig equations

- Solve: \(\cot^2 \theta = 4 \) for \(0^\circ \leq \theta \leq 360^\circ \)
 \[\cos \theta = \pm 2 \]
 \[\tan \theta = \pm \frac{1}{2} \]

- \(\tan \theta = \frac{1}{2} \)
 \(\theta \approx \tan^{-1}(0.5) \)
 \(\theta \approx 26.565^\circ, 206.565^\circ \)

- Solve: \(3 \sin \theta + 8 = 7 \) for \(0^\circ \leq \theta \leq 360^\circ \)
 \[3 \sin \theta = -1 \]
 \[\sin \theta = -\frac{1}{3} \]
 \(\theta = \sin^{-1}(-\frac{1}{3}) \approx -19.47^\circ \)
 \(\theta \approx 199.47^\circ, 340.529^\circ \)

- Solve: \(2 \csc x = 8 \) for \(0 \leq \theta \leq 2\pi \)
 \[\csc x = \frac{7}{2} \]
 \[\sin x = \frac{2}{7} \]
 \[x = \sin^{-1}(0.35) \approx 0.358, 2.784 \]

- Solve: \(2 \cot x + 2 = 0 \) for \(0 \leq \theta \leq 2\pi \)
 \[\cot x = -3 \]
 \[\tan x = -\frac{1}{3} \]
 \(x = \tan^{-1}(-\frac{1}{3}) \approx -0.322 \)
 \(x \approx 2.820, 5.961 \)
Section 8-1
Inclination and finding the equation of a line.

- If inclination = 30°, then \(m = \frac{1}{\sqrt{3}} \approx 0.577 \)

 With y-intercept of 2, the equation of the line is \(y = \frac{\sqrt{3}}{3} x + 2 \) or \(y \approx 0.577x + 2 \)

- If inclination = 60°, then \(m = \sqrt{3} \approx 1.732 \)

 If the line passes through (2,3) then the equation of the line is \(y - 3 = \sqrt{3}(x-2) \) or \(y - 3 = 1.732(x-2) \)

\[
y = \sqrt{3} x + 3 - 2\sqrt{3}
\]

- If inclination = 45°, then \(m = \frac{1}{1} = 1 \)

 Given a y-intercept of -4, the equation of the line is \(y = x - 4 \)

- If inclination = 147°, then \(m = -0.649 \)

 If the line passes through (-6,8) then the equation of the line is \(y - 8 = -0.649(x + 6) \)