Practice Problems for Transformations of Functions

1. If $n = f(A)$ gives the number of gallons of paint needed to cover an area of A sq.ft., explain the meaning (in the context of painting) of:

(a) $f(A+10)$ number of gallons needed to cover $(A+10)$ sq.ft.
(b) $f(A)+10$ number of gallons needed to cover A sq.ft. plus ten more gallons of paint.

2. The graph of $f(x)$ contains the point $(3, -4)$. What point must be on the graph of:

(a) $f(x)+5$
(b) $f(x)+5$
(c) $f(x-3)-2$
(d) $\frac{1}{2}f(x)$
(e) $f(\frac{1}{2}x)$

(f) $-3f(x)$
(g) $f(-3x)$
(h) $-f(\frac{1}{2}x-3)+1 = -f(\frac{1}{2}(x-9))+1$

3. Table 6.3 contains values of $g(t)$. Find formulas in terms of $g(t)$ for each of the functions in tables a – e.

<table>
<thead>
<tr>
<th>t</th>
<th>-1</th>
<th>-0.5</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g(t)$</td>
<td>0.5</td>
<td>0.8</td>
<td>1.0</td>
<td>0.9</td>
<td>0.6</td>
</tr>
</tbody>
</table>

(a) t
(b) t
(c) t
(d) t
(e) t

<table>
<thead>
<tr>
<th>t</th>
<th>-1</th>
<th>-0.5</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a(t)$</td>
<td>1.0</td>
<td>1.3</td>
<td>1.50</td>
<td>1.4</td>
<td>1.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t</th>
<th>-1</th>
<th>-0.5</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b(t)$</td>
<td>1.0</td>
<td>0.9</td>
<td>0.6</td>
<td>0.1</td>
<td>-0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t</th>
<th>-1</th>
<th>-0.5</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c(t)$</td>
<td>0.7</td>
<td>0.6</td>
<td>0.3</td>
<td>-0.2</td>
<td>-0.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t</th>
<th>-1</th>
<th>-0.5</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d(t)$</td>
<td>0</td>
<td>0.5</td>
<td>0.8</td>
<td>1.0</td>
<td>0.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t</th>
<th>-1</th>
<th>-0.5</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e(t)$</td>
<td>1.2</td>
<td>1.7</td>
<td>2.0</td>
<td>2.2</td>
<td>2.1</td>
</tr>
</tbody>
</table>
4. \(H(t) = 68 + 93 \cdot (0.91)^t \) gives the temperature in degrees Fahrenheit (°F) of a cup of coffee t minutes after it is brought into a classroom.

(a) What was the temperature of the coffee when it was first brought into the classroom? \(61^\circ F \).

(b) What was the temperature of the classroom? \(68^\circ F \).

(c) How fast does the temperature difference between the coffee and the room change? \(9^\circ \) per minute.

(d) Find a formula for \(H(t + 15) = 68 + 93 \cdot (0.91)^{t+15} \).

(e) Find a formula for \(H(t) + 15 = 68 + 93 \cdot (0.91)^t + 15 = 83 + 93 \cdot (0.91)^t \).

(f) Describe in practical terms a situation modeled by \(H(t + 15) \) and a situation modeled by \(H(t) + 15 \).

\(H(t + 15) \) is \(H(t) \) shifted 15 units to the left. \(H(t + 15) \) could represent the temperature of a cup of coffee brought into the classroom 15 minutes earlier.

\(H(t) + 15 \) is \(H(t) \) shifted 15 units up. \(H(t) + 15 \) could represent the temperature of a cup of coffee brought into a warmer (68°F warmer).

(g) Which function, \(H(t + 15) \) or \(H(t) + 15 \), approaches the same final temperature as \(H(t) \)?

As \(t \to \infty \) (gets larger), \(H(t) \) and \(H(t + 15) \) approach 68°F (room temperature).

\(H(t) + 15 \) approaches 83°F (its room temp.)

5. A hot pottery bowl is removed from a kiln and set on the floor to cool. The difference \(D(t) \) between the pot's temperature, initially 350°F, and the room temperature, 70°F, decays exponentially over time at a rate of 3% per minute. The pot's temperature \(P(t) \) is a transformation of \(D(t) \).

\(D(t) = 280 \cdot (0.97)^t \)

(a) Find a formula for \(P(t) \). \(P(t) = 280 \cdot (0.97)^t + 70 \)

(b) Sketch graphs of \(D(t) \) and \(P(t) \) on the same set of axes.

Label the equations of the asymptotes on the graph.

Alternative method for \(\ln(5e^x) = \ln(e^{x+h}) \)

\(\ln(5e^x) = \ln(e^{x-h}) \)

\(\ln(5) + \ln(e^x) = x - h \)

\(\ln 5 + x = x - h \)

6. \(f(x) = e^x \) and \(g(x) = 5e^x \). If \(g(x) = f(x - h) \), find \(h \).

\(5e^x = e^{x-h} \)

\(5e^x = e^x \cdot e^{-h} \)

\(h = \ln \left(\frac{1}{e^h} \right) \)

\(h = \ln \left(\frac{1}{e} \right) \) or 0.2

\(h = \ln 0.2 \)
7. A function \(Q(t) \) has domain \(t \geq 0 \), \([0, \infty)\) in interval notation, and range \(-4 \leq Q(t) \leq 7\), or \([-4, 7]\).

State the domain and range in interval notation for:

(a) \(y = Q(-t) \)
 \[\text{D: } (-\infty, 0] \quad \text{R: } [-4, 7] \]

(b) \(y = -Q(t) \)
 \[\text{D: } [0, \infty) \quad \text{R: } [-7, 4] \]

(c) \(y = -Q(-t) \)
 \[\text{D: } (-\infty, 0] \quad \text{R: } [-7, 4] \]

(d) \(y = -Q(t - 4) \)
 \[\text{D: } [4, \infty) \quad \text{R: } [-7, 4] \]

8. State a formula for each of the transformations of \(m(n) = n^2 - 4n + 5 \).

(a) \(y = m(-n) \)
 \[n^2 + 4n + 5 \]

(b) \(y = -m(n) \)
 \[-n^2 + 4n - 5 \]

(c) \(y = -m(-n) \)
 \[-n^2 - 4n - 5 \]

(d) \(y = m(-n) + 3 \)
 \[n^2 + 4n + 8 \]

9. Using Figure 6.24, calculate:

(a) \(f(-x) \) for \(x = -4 \)
 \[-10 \]

(b) \(-f(x) \) for \(x = -6 \)
 \[-25 \]

(c) \(-f(-x) \) for \(x = -4 \)
 \[10 \]

(d) \(-f(x + 2) \) for \(x = 0 \)
 \[4 \]

(e) \(f(-x) + 4 \) for \(x = -6 \)
 \[-26 \]
10. The function \(n = f(A) \) represents the number of gallons of paint needed to cover an area of \(A \) sq. ft.

Generate a transformation of \(n = f(A) \) to represent the following scenarios:

(a) I calculated how many gallons I needed to cover \(A \) and bought 2 more gallons than I needed. \(n = f(A) + 2 \)
(b) I bought enough paint to apply two coats of paint on the area \(A \). \(n = 2f(A) \)
(c) I bought enough paint to cover the area \(A \) plus two square feet more. \(n = f(A + 2) \)

11. The U.S. population in millions is \(P(t) \) today, \(t \) in years.

Match each of the following statements (I – IV) with one of the following formulas (a – h):

I. The population ten years before today. \(d \)
II. Today’s population plus 10 million immigrants. \(c \)
III. Ten percent of today’s population. \(f \)
IV. The population after 100,000 people have emigrated. \(h \)

(a) \(P(t) - 10 \) (b) \(P(t - 10) \) (c) \(P(t) + 10 \) (d) \(P(t + 10) \) (e) \(P(t) / 0.1 \) (f) \(0.1P(t) \) (g) \(P(t) + 0.1 \) (h) \(P(t) - 0.1 \)

12. Table 6.17 contains values of \(f(x) \).

Each subsequent function, \(g(x) = m(x) \), can be obtained by applying a single transformation to \(f(x) \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>-6</th>
<th>-4</th>
<th>-2</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>12</td>
<td>4</td>
<td>-8</td>
<td>-14</td>
<td>-2</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>-6</th>
<th>-4</th>
<th>-2</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g(x))</td>
<td>36</td>
<td>12</td>
<td>-24</td>
<td>-42</td>
<td>-6</td>
<td>0</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>-6</th>
<th>-4</th>
<th>-2</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h(x))</td>
<td>5</td>
<td>2</td>
<td>-4</td>
<td>-7</td>
<td>-1</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>-6</th>
<th>-4</th>
<th>-2</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k(x))</td>
<td>10</td>
<td>0</td>
<td>-2</td>
<td>-14</td>
<td>-8</td>
<td>4</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>-6</th>
<th>-4</th>
<th>-2</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m(x))</td>
<td>8</td>
<td>0</td>
<td>-12</td>
<td>-18</td>
<td>-6</td>
<td>-4</td>
<td>6</td>
</tr>
</tbody>
</table>
13. Write a formula for each of the transformations of \(Q(t) = 4e^{6t} - 3 \):

 \(a. \ Q\left(\frac{t}{4}\right) = 4e^{\frac{2t}{4}} - 3 \quad b. \ Q(t) \cdot \frac{4}{3} = e^{\frac{6t}{4}} - 1 \quad c. \ Q(2t) + 11 = 4e^{12t} + 8 \quad d. \ Q(t - 3) = 28e^{0.6(t-3)-3} \)

14. The function \(f(x) \) represents the daily cost to me of my Uber driver driving a total of \(x \) miles (to and from work). Write a transformation of \(f(x) \) to represent the Uber cost to me for each scenario:

 (a) I received a raise yesterday, so I gave my Uber driver a $5.00 tip today. \(\frac{f(x) + 5}{\frac{5}{f(x)}} \)

 (b) I haven't paid my driver all week, so I owe him/her for five days of driving. \(f(x + 5) \)

 (c) There was an accident on the way to work today so my driver had to take a detour which added five extra miles to the trip to work. \(f(5x) \)

15. \(A = f(r) \) represents the area of a circle of radius \(r \).

 (a) Write a formula for \(f(r) \). \(\pi r^2 \)

 (b) Which expression represents the area of a circle whose radius is increased by 10%?

 (i) \(0.10 f(r) \) \hspace{1cm} (ii) \(f(r + 0.10) \) \hspace{1cm} (iii) \(f(0.10r) \) \hspace{1cm} (iv) \(f(1.10r) \) \hspace{1cm} (v) \(f(r) + 10 \)

 (c) If the radius is increased by 10%, by what percent is the area increased? \(210\% \)

16. The function \(f(x) \) has domain \(-6 \leq x \leq 2 \), \([-6, 2]\) interval notation, \(\{x | -6 \leq x \leq 2\} \) in set notation. The average rate of change of \(f(x) \) over that domain is \(\frac{2.4}{2} = 3 \).

 For each of the following transformations of \(f(x) \), state the new domain and average rate of change.

 (a) \(f(2x) \) \hspace{1cm} D: \([-3, 1]\) \hspace{1cm} Avg. Rate of change: \(\frac{+2.4}{4} = 0.6 \)

 (b) \(f\left(\frac{1}{2}x\right) \) \hspace{1cm} D: \([-2, 8]\) \hspace{1cm} Avg. Rate of change: \(\frac{+2.4}{3.2} = \frac{3}{4} \)

 (c) \(f(x+2) \) \hspace{1cm} D: \([-8, 0]\) \hspace{1cm} Avg. Rate of change: \(3 \)

 (d) \(f(-x) \) \hspace{1cm} D: \([-2, 6]\) \hspace{1cm} Avg. Rate of change: \(-3 \)
17. Fill in as many values as possible:

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(x)</td>
<td>-3</td>
<td>-4</td>
<td>2</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>2f(x) + 3</td>
<td>-3</td>
<td>-5</td>
<td>7</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>f(x - 1) + 1</td>
<td>X</td>
<td>-2</td>
<td>-3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>f(x + 2) - 1</td>
<td>1</td>
<td>-1</td>
<td>4</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3f(2x + 2) - 1</td>
<td>-10</td>
<td>5</td>
<td>14</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

18. The graph of \(f(x) \) below has x-intercepts \((-1, 0)\) and \((3, 0)\), y-intercept \((0, -2)\), and a horizontal asymptote at \(y = 2 \).

For the transformations, find the: x-intercepts, y-intercept, and horizontal asymptote

(a) \(3f(x)\)
\((-1, 0), (3, 0)\)
\((0, -6)\)
\(y = 6\)

(b) \(f(x-1)\)
\((0, 0), (4, 0)\)
\((0, 0)\)
\(y = 2\)

(c) \(f(x) - 1\)
\(X\) \(X\)
\((0, -3)\)
\(y = 1\)

(d) \(-2f(x)\)
\((-1, 0), (3, 0)\)
\((0, 4)\)
\(y = -4\)

(e) \(\frac{1}{2}f(x+2) - 1\)
\(\approx (0, -2)\)
\(y = 0\)

(f) \(-f(-x)\)
\((-3, 0), (1, 0)\)
\((0, 2)\)
\(y = -2\)
19. The points \((-12, 20), (0, 6), \text{ and } (36, -2)\) lie on the graph of \(f(x)\). Find the corresponding points on the graph of \(g(x) = 10 - 2f(-3x)\).

\[
(4, -30) \quad (0, -2) \quad (-12, 14)
\]

20. \(f(x) = e^x\) and \(g(x) = e^{x-2}\). If \(g(x) = kf(x)\), find \(k\).

\[
k e^x = \frac{e^x}{e^2} \quad \Rightarrow \quad k = \frac{1}{e^2}
\]

21. If \(h(x) = \log(ax)\), what is \(k\) if \(h(x) = \log(x) + k\)?

\[
\log (ax) = \log a + \log x \quad \Rightarrow \quad k = \log a
\]

22. In the table below, fill in all the boxes for which you have sufficient information.

<table>
<thead>
<tr>
<th>(x)</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>-4</td>
<td>-1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>-3</td>
<td>-6</td>
</tr>
<tr>
<td>(f(-x))</td>
<td>-6</td>
<td>-3</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>-1</td>
<td>-4</td>
</tr>
<tr>
<td>(-f(x))</td>
<td>4</td>
<td>1</td>
<td>-2</td>
<td>-3</td>
<td>0</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>(f(x-2))</td>
<td>-6</td>
<td>-3</td>
<td>0</td>
<td>1</td>
<td>-2</td>
<td>-5</td>
<td>-8</td>
</tr>
<tr>
<td>(f(x+2))</td>
<td>(X)</td>
<td>(X)</td>
<td>-4</td>
<td>-1</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>(f(x)+2)</td>
<td>-2</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>-1</td>
<td>-4</td>
</tr>
<tr>
<td>(f(x)+2)</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>-3</td>
<td>-6</td>
<td>(X)</td>
<td>(X)</td>
</tr>
<tr>
<td>(2f(x))</td>
<td>-8</td>
<td>-2</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>-6</td>
<td>-12</td>
</tr>
<tr>
<td>(\frac{-f(x)}{3})</td>
<td>(\frac{4}{3})</td>
<td>(\frac{1}{3})</td>
<td>(-\frac{2}{3})</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
23. Match each of the functions (a – f) with one of the graphs (i – vi) below:

(a) \(y = e^x \)
(b) \(y = e^{5x} \)
(c) \(y = 5e^x \)
(d) \(y = e^{x+5} \)
(e) \(y = e^{-x} \)
(f) \(y = e^x + 5 \)

With thanks to Professor Eric Connally, *Functions Modeling Change.*